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Abstract – The distribution of constant electric current potential in case of probe measurement on anisotropic semiconduc-

tors and fields has been studied. The expressions for potential distribution have been obtained. It enables to identify the area 

of  the probe field  of the scanning microscope in case  an anisotropic film is under study. The results of the research 

demonstrate the correlation between the size and anisotropy of specific electroconductivity and the resistance change of 

probe spreading in limited films.  
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 Introduction 

Semiconductor films of different structures are 

more and more widely used in production of mi-

cro- and nanoelectronics structures. The reduction 

of semiconductor thiсkness to submicronic causes 

inhomogenuities of various kinds in distribution 

of free charge carriers and anisotropy [1,2]. The 

scope of the observed phenomena, connected with 

charge transfer, is much wider in anisotropic than 

in isotropic semiconductors. 

 In special literature one can find the descrip-

tion of the change in charge carrier mobility in 

silicium and germanium in case of deformation, 

the change in effective masses and other factors 

leading to artificial anisotropy in film of nanomet-

ric thickness [1,3]. It is known that it is necessary 

to take into account the change of conductivity 

along different directions while studying electric 

fields in the film area, including the cases when 

they are studied by means of scanning probe mi-

croscopy [4,5]. 

One of the most verifiable ways of specific 

electroconductivity measurement is the method of 

spreading resistance reflection, which is available 

for a standard atomic-force microscope. The 

method works the following way: scanning is per-

formed by the conducting probe AFM of the mi-

croscope in a contact mode and in this case the 

pressing force of the probe to the surface is kept 

constant. 

The bias voltage is put to the probe and the re-

sulting current through the sample, depending on 

the probe position, is registered.  The second con-

tact to the sample under the study is a plane of 

junction of the sample with  the conductive back-

ing. So, we simultaneously obtain the information 

about the surface relief pattern and the conductivi-

ty map.  

The value of the measured current is propor-

tional to local resistance of the sample under 

study is case the contact resistance and the given 

voltage remain unchanged. 

It is contact resistance that introduces the basic 

error, that is why it is necessary to clean thor-

oughly the scanned plane of the film or the crys-

tal.  While measuring current-voltage characteris-

tics the probe can settle above the surface rather 

long and, as a result, cause overheating of the 

sample and a change in resistance in this particu-

lar place. Not to expose the sample surface to 

such an influence it makes sense to use each ses-

sion of scanning in a spreading resistance mode as 

a separate point for a current-voltage characteris-

tic.  

For practical research work experimenters and 

engineers must take into account a number of fac-

tors:  the final sizes and the shapes of samples, the 

angle of crystallographic direction orientation to 

the sample boundaries, location and sizes of the 

current contacts and etc. These data determines 

the accuracy of the drawn conductivity map. The 

problem here lies mainly in a complicated charac-

ter of electric potential distribution and current 

distribution in samples, characterized by anisotro-

py of electrical parameters. These issues are not 

fully described in special literature. 
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Fig. 1. Measurement Diagram in the mode  reflecting  spreading 

resistance 
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This graph in simplified form shows a probe 

pickup to make measurements in the mode of 

spreading resistance, where 1 – the sample under 

study, 2 – metal backing, 3 – probe, 4 – laser ray, 

5 – cantilever, 6 – amperemeter. 

So, the aim of this work is to analyze the ani-

sotropy influence on potential distribution of the 

current probe in case of scanning a semiconductor 

film with a tensor conductivity. The main tasks 

are to obtain theoretical expressions for calculat-

ing electric field distribution and their further 

analysis. Another task is to study the influence of 

boundaries and electroconductivity of the sample 

on the value of the probe spreading resistance. 

 

 Theoretical calculation of electric potential 

Let us consider the distribution of the current 

probe potential to the anisotropic semiconductor 

film (fig. 2a). 
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Fig. 2. a) The scheme of current probe location to the film under the 
study. I1 – probe current; (x1,y1) – coordinates of current probe cen-

ter; a, b, d – geometrical sizes of the film; b)  the form of the contact 

in case when the  influence of boundaries is not taken into account; 
c) the form of contact in case when the influence of boundaries is 

taken into account. 

It is convenient to represent the tensor of spe-

cial electroconductivity in Cartesian coordinate 

system in the following way [11]:  
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where  – value of special electroconductivity 

along z-axis; II – special conductivity along x-

axis and  y-axis. Anisotropy of this kind can be 

caused by the crystal structure or by the defor-

mation influence [4-7], and also appears in quan-

tum-dimensional films [1,2]. 

The equation for the electrical potential can be 

presented in the following form [11,12]:  
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By replacing in (2) a variable we will get Laplace 

equation: 
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In case of an unlimited film it is convenient to 

use the cylindrical coordinate system in which the 

equation (3), according to [11,12] will acquire the 

form: 
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We fix the beginning of the cylindrical coordi-

nate system in the center of the current probe. The 

boundary conditions for the potential come from 

the condition that the normal constituent of cur-

rent density is equal to zero on the whole surface 

of the sample except the points under  the current 

electrode point with the radius r0 (fig. 2b); we 

consider  the potential of  the low plane to be 

equal to zero: 
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Laplace equation with boundary conditions (6) 

can be represented in the form of Fourier-Bessel 

integral [12,13] and has a following solution:  
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where coefficient Ф(t, ξ) are determined by the 

equality:  
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If we place the expression for the potential (7) 

in the equation (5) and multiply it by J0(t·r)r dr, 

integrate by r from 0 to ∞ and consider the prop-

erty of orthogonality of  Bessel function [12,13], 

then for Ф(t, ξ) we will have the equation:  
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Consequently,  
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where consonants A and B are determined by the 

boundary conditions (6). 

As a result the expression for the potential can 



be represented in the form of: 
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Returning to the standard cylindrical coordi-

nates we get: 
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After calculating the average value of the po-

tential by the circle contact area we can find 

spreading resistance: 
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In accordance with the obtained expression 

(13), the values, characterizing the current spread-

ing in the film, are the area of the contact surface 

[13-16], the film thickness and anisotropy pa-

rameters.  

To take into account the film boundaries let us 

consider potential distribution of the current probe 

to a rectangular anisotropic film (fig. 2a), let us 

represent the point of the probe as a square with 

the side 2ε (fig. 2c). This particular shape of the 

contact area (unlike round) enables us to obtain an 

analytical solution for the potential in a rectangu-

lar sample. The contact surface shape of the cur-

rent probe 3 (fig. 2) is difficult to control. The 

main parameter, determining spreading resistance 

for small probes (point probes), is the contact sur-

face area but not its shape. 

Boundary conditions for the potential in this 

case are presented in the following form: 
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Here x1 and y1 – are coordinates of the mova-

ble probe, the planes of contact areas are parallel 

to the sample planes (fig. 2). 

It seems convenient to represent the solution of  

the boundary problem (2), (14) for potential dis-

tribution in double Fourier series [17]: 
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Then we find the value of spreading resistance 

of the limited anisotropic field: 
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In case of the point contacts (2ε << d, a, b), in 

the expressions mentioned above (15), (17) we get 

the simplification: 

   
.1

sinsin


















k

k

n

n                  (18) 

One of principle conditions of applicability of 

the potential expressions (8), (15) is the presence 

of a smooth boundary on the plane, separating the 

contact and the metal surface. The influence of 

quantum and charge effects is not taken into ac-

count [1, 2, 11], which are especially noticeable at 

low temperatures. 

It is known that in thin films at low tempera-

tures (T≈0-10 K) it is possible to observe the ef-

fect of electroconductivity quantization and ballis-

tic transport of electrons and tunnel effects. The 

classical electrodynamic model can not describe 

such phenomena. 

Nonhomogeneous distribution of doping mate-

rial in the sample under study at simultaneous ex-

posure to electric field and uneven heating can 

lead to appearance of areas of bulk charge, which 

change within time. That is the reason why the 

described theory of potential measurement and 

spreading resistance can not be applied to struc-

tures with bulk charge, which are exposed to une-

ven heating. 

 

 Modelling of electrical fields of current probe 

Let us model an electrical field at the section 

of a semiconductor film on the plane y = b/2 with 

the side length a = b = 10d, 2ε = d, the contact is 

placed at the center of the film surface (fig. 3).The 

models of potential and current distribution are 

built on the basis of the expression (15) where 

x1 = a/2, y1 = b/2/. In figure 2 the total number of 

equipotentials on the sample section equals 20, 

the number of the  current lines equals 10. Cad-

mium and zink diarsenide have anisotropy param-

eters close to those mentioned in fig. 3 (natural 

anisotropy). If semiconductors are deformed, spe-

cial conductivity anisotropy can be observed (for 

silicon – 1/2=15) [3, 4]). 

From the built models of the potential distribu-

tion and the distribution of the current lines (fig. 

3) it is clear that  the increase of /II – anisotro-

py parameter leads to a considerable concentra-

tion of equipotentials and current lines in the area 



under the contact, and correspondingly the reduc-

tion of /II – parameter leads to field spreading 

in the volume of the film. 

 

 

 

 
Fig. 3. Model of distribution of electric potential (dotted line) and 

current (full lie) in anisotropic film;  

а) II = ; b) II = /5; c) II = 5.  

Let us draw the correlation between the film 

resistance, obtained according to (17), and the 

contact size (fig. 4). To analyze the influence of 

the boundaries we have calculated the ratio of re-

sistance, which is calculated by the formula (17) 

to resistance of the limitless film (13) for the same 

contact surface area   (4ε
2
=πr0

2
).  

In the case under study the semiconductor film 

has a shape of a square with the parameters a = b, 

d = a/10. The probe with the contact width 2ε = d 

is placed in the center of the film surface (x1 = a/2, 

y1 = b/2, z = 0) (fig. 4). 

 
Fig. 4. The dependence of specific resistance from square size film 

(a = b, d = a/10) with parameters of electroconductivity II = /5, 

II = , II = 5. 

It is noticeable (fig. 4) that the value of the ani-

sotropy parameter /II has a strong influence on 

the value of spreading resistance. The influence of 

anisotropy and the sample boundaries is the most 

visible with the probe contact size 2ε < a/20. 

 

 Experimental testing 

The experimental testing of the obtain distribu-

tions was carried out on anisotropic crystals cad-

mium diarsenide (CdAs2) and zink diarsenide 

(ZnAs2), which parameters are presented in the 

following work [16]. Tungsten contact-logging 

probes were used in each case as current elec-

trodes. In each case the potential value was identi-

fied with the help of a movable metal probe relat-

ing to the electrode which was grounded. 

The constant current 0.05 A was passed 

through the sample from a stabilized supply 

source, the potential difference was measured 

with the help of а high resistance voltmeter. The 

error of measurement equipment was not more 

than 5%. The voltage was measured twice with 

different polarity of current. Figure 5 represents 

its average value. After the experimental potential 

value was obtained the diagrams of the corre-

sponding theoretical dependences φ(x, y) were 

drawn, with the same current intensity through the 

sample. Figure 5 represents an example of corre-

lation of the theoretical curve, drawn according to 

the potential distribution (15) with the experi-

mental values for cadmium diarsenide 

(=8.76 Оm
-1

·m
-1

, II=40.96 Оm
-1

·m
-1

,  

a=8.65 mm, b=10.15 mm, d=2.65 mm, 

2ε=0.62 mm, x1=a/2, y1=b/2). The potential was 

measured on the crystal surface in the contact 

plane on the line y = b/2. Figure 6 represents the 

diagram of deviation of the experimental value 

from theoretical value 
2
(x)=[((experimental)-

(theoret.))/(theoret.)]
2
.  

The maximum deviations from theoretical val-

ues can be explained by non-homogeneities on the 

crystal surface. The calculated F-ratio test for 

matching theoretical and experimental points has 

the value of F=0.092 with critical for such amount 

of measurements value Fcrit=2.6. The obtained 

ratio of experimental and theoretical correlation is 

Rkorr=0.95. So, we obtained a good matching of 

theoretical data and theoretical potential distribu-

tion of the electric field within the measurement 

accuracy. 

  
Fig. 5. Comparison of experimental data (+) and theoretical depend-

ence (full line) of potential distribution on the line of the contact in 
semiconductor sample. 

 



 
Fig. 6. Error diagram.  

 

 Conclusion 

The research demonstrates that at probe measure-

ment of electrophysical parameters of films with sub-

micronic thickness the potential distribution depends 

considerably on anisotropy, the value of anisotropy 

parameter  /II has a great influence on the resistance 

value of  current probe spreading. 
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